Portability and fidelity of RNA-repair systems.
نویسندگان
چکیده
Yeast tRNA ligase (Trl1) is an essential enzyme that converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO(4), 3'-5' phosphodiester at the splice junction. Trl1 also catalyzes splicing of HAC1 mRNA during the unfolded protein response. Trl1 performs three reactions: the 2',3'-cyclic phosphate of the proximal RNA fragment is hydrolyzed to a 3'-OH, 2'-PO(4) by a cyclic phosphodiesterase; the 5'-OH of the distal RNA fragment is phosphorylated by a GTP-dependent polynucleotide kinase; and the 3'-OH, 2'-PO(4), and 5'-PO(4) ends are then sealed by an ATP-dependent RNA ligase. The removal of the 2'-PO(4) at the splice junction is catalyzed by the essential enzyme Tpt1, which transfers the RNA 2'-PO(4) to NAD(+) to form ADP-ribose 1"-2"-cyclic phosphate. Here, we show that the bacteriophage T4 enzymes RNA ligase 1 and polynucleotide kinase/phosphatase can fulfill the tRNA and HAC1 mRNA splicing functions of yeast Trl1 in vivo and bypass the requirement for Tpt1. These results attest to the portability of RNA-repair systems, notwithstanding the significant differences in the specificities, mechanisms, and reaction intermediates of the individual yeast and T4 enzymes responsible for the RNA healing and sealing steps. We surmise that Tpt1 and its unique metabolite ADP-ribose 1"-2"-cyclic phosphate do not play essential roles in yeast independent of the tRNA-splicing reaction. Our finding that one-sixth of spliced HAC1 mRNAs in yeast cells containing the T4 RNA-repair system suffered deletion of a single nucleotide at the 3' end of the splice-donor site suggests a model whereby the yeast RNA-repair system evolved a requirement for the 2'-PO(4) for RNA ligation to suppress inappropriate RNA recombination.
منابع مشابه
[Frontiers in Bioscience 8, d117-134, January 1, 2003] 117 RETROVIRAL MUTATION RATES AND REVERSE TRANSCRIPTASE FIDELITY
1. Abstract 2. Importance of retroviral genetic variation 3. Historic developments in understanding retroviral genetic variation and RT fidelity 4. Factors that influence retroviral mutation rates 4.1. Reverse transcription 4.2. Other viral proteins 4.3. Nucleotide pools, DNA repair, and mammalian DNA polymerases 4.4. RNA transcription 4.5. RNA modification 4.6. Antiviral nucleoside analogs 5. ...
متن کاملThe Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe Utilization of High Fidelity Simulation in the Support of UAV Launch Phase Design: Three Case Studies
Improvement of the launch phase of a jet powered Unmanned Aerial Vehicle (UAV) with Jet Assisted Take Off (JATO), has been the subject of attention in the UAV industry. Use of flight simulation tools reduces the risk and required some amount of flight testing for complex aerospace systems. Full nonlinear equations of motion are used to study and simulate this maneuver and three case studies of ...
متن کاملMolecular Assessment of Clonal Fidelity in Micropropagated Grape (Vitis spp.) Rootstock Genotypes Using RAPD and ISSR Markers
Micropropagated plantlets derived from three different grape rootstock genotypes namely, Dogridge (Vitis champini), SO4 (V. berlandieri×V. rupestris) and ARI-H-144 (V. vinifera×V. labrusca) were subjected to randomly amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) analyses in order to evaluate their genetic stability and/or detect likely existing variations among in vi...
متن کاملTranscriptional mutagenesis reduces splicing fidelity in mammalian cells
Splicing fidelity is essential to the maintenance of cellular functions and viability, and mutations or natural variations in pre-mRNA sequences and consequent alteration of splicing have been implicated in the etiology and progression of numerous diseases. The extent to which transcriptional errors or lesion-induced transcriptional mutagenesis (TM) influences splicing fidelity is not currently...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 9 شماره
صفحات -
تاریخ انتشار 2004